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NOTES PART VI: NORMAL FORM THEOREM, GENERAL CASE

Up to now we have always considered a local exponent ρ of L ∈ O[6] which was maximal modulo Z, and

we proved for this case the normal form theorem on the function space F = xρO[z]<m, where m is the

multiplicity of ρ as a root of the indicial polynomial χ of L. We will now treat the general case of arbitrary

local exponents. It turns out that local exponents which differ by an integer pose extra problems. We will

call the occurrence of integer differences resonance.

To motivate our constructions, let us recall that the key step in the proof of the normal form theorem was to

determine the image L0(F) of the initial form L0 of L and to prove that actually L0(F) = xF . From this

follows that the tail T = L0 − L of L sends F into the image of L0, which is the critical property used to

construct the normalizing automorphism u.

Let us illustrate first that a suitable definition of F is so obvious in case of resonance.

Example. Let L0 = x2∂2−x∂ be an Euler operator of shift 0 and with indicial polynomial χ(t) = t(t−2).

The local exponents are σ = 0 and ρ = 2, both of multiplicity 1. As both σ and ρ are simple roots of χ, one

may expect that we can dispense of logarithms. A natural candidate for F seems to be F = xσO+ xρO =

O + x2O = O. Let us compute its image under L0. We get

L0(O) = Cx+ x3O ( xF = xO.

So the image is strictly contained in xF . If you now take L = L0 − x2∂ with T = x2∂, we see that

T (x) = x2 is not contained in xF . So the construction of the automorphism u breaks down.

To remedy this failure, let us introduce logarithms in F . We will describe two options to do this. The first

one turns out to be unsuccessful, while the second will work.

Attempt 1. Take

F = (xσO + xρO)[z]<2 = O[z]<2 = O ⊕Oz.

This looks like a reasonable choice. Let us write L0 = x2∂2 − x∂ for the action of the extension of L0 to

F . We get

L0(F) = Cx+ x3O + L0(Oz).

To compute the last summand, recall from Lemma 3 in part III that

L0(xkz) = xk[χ(k)z + χ′(k)].

As χ(t) = t(t− 2) and χ′(t) = 2(t− 1) this gives
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k = 0: L0(z) = 0z + 2(0− 1) = −2;

k = 1: L0(xz) = −xz + 0 = −xz;

k = 2: L0(x2z) = 0x2z + 2x2 = 2x2;

k = 3: L0(x3z) = 3x3z + 4x3.

Already the first case k = 0 shows that L0(F) 6⊂ xF . So this choice of F is not appropriate.

Attempt 2. Let us now take

F = xσO[z]<1 + xρO[z]<2 = O + x2O + x2Oz = O ⊕ x2Oz.

We have L0(F) = L0(O) + L0(x2Oz) with L0(O) = L0(O) = Cx+ x3O as before. As for L0(x2Oz),

use again Lemma 3 to compute L0(xkz). We get as before

k = 2: L0(x2z) = 2x2;

k = 3: L0(x3z) = 3x3z + 4x3.

k = 4: L0(x3z) = 8x4z + 6x4.

This implies

L0(F) = L0(O ⊕ x3Oz) = Cx+ x3O + Cx2 + x3Oz = x(O ⊕ x2Oz) = xF .

That is precisely what we want - and it gives us a hint of how to define F in general.

Lemma 5. Let E ∈ O[z] be an Euler operator with shift 0. Let Ω be a set of local exponents of E

with integer differences, ordered increasingly,

ρ1 < ρ2 < . . . < ρr,

meaning that ρk+1 − ρk ∈ N>0. Let mk be the multiplicity of ρk. Set

F = xρ1O[z]<m1
+ xρ2O[z]<m1+m2

+ . . .+ xρrO[z]<m1+m2+...+mr .

Then

E(F) = xF .

Proof. (a) We show that E(F) ⊂ xF . Recall from Lemma 3 that

E(xρzi) = xρ · [χ(ρ)zi + χ′(ρ)izi−1 + 1
2!χ
′′(ρ)i2zi−2 + . . .+ 1

n!χ
(n)(ρ)inzi−n].

Therefore, as χ(j)(ρk) = 0 for 0 ≤ j < mk, it follows that E sends F into
r∑

k=1

xρkO[z]<m1+...+mk−1
=

r∑
k=2

xρkO[z]<m1+...+mk−1
⊂

r∑
k=2

xρk−1+1O[z]<m1+...+mk−1
⊂ xF .

Here, we use that ρk − ρk−1 ∈ N>0 and hence ρk−1 + 1 ≤ ρk. This proves that E(F) ⊂ xF .

(b) We show that E(F) ⊃ xF . It suffices to check that all monomials xσzi ∈ xF lie in the image, where

σ = ρk + e for some k = 1, ..., r and e ≥ 1, and where i < m1 + . . .+mk. We distinguish two cases.

(i) If σ 6∈ Ω, proceed by induction on i. Let i = 0. We have

E(xσ) = E(xσ) = χ(σ)xσ 6= 0,

since σ is not a root of χ. So xσ ∈ E(F). Let now i > 0. Lemma 3 yields
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E(xσzi) = χ(σ)xσzi + χ(j)(σ)xσ
n∑
j=1

ij

j!
zi−j .

By the inductive hypothesis and using again that χ(σ) 6= 0, we end up with xσzi ∈ E(F).

(ii) If σ ∈ Ω, write σ = ρk for some 1 ≤ k ≤ r. As xσzi = xρkzi ∈ xF for i < m1 + . . .+mk and since

ρ1 < ρ2 < · · · < ρr, we know that k ≥ 2 and

xρkzi 6∈ x ·
r∑
`=k

Oxρ` [z]<m1+...+m` .

Hence

xρkzi ∈ x ·
k−1∑
`=1

Oxρ` [z]<m1+...+m` .

This implies in particular that 0 ≤ i < m1 + . . . + mk−1, which will be used later on. We proceed by

induction on i. Let i = 0. By Lemma 3,

E(xρkzmk) =

mk−1∑
j=0

(mk)j

j!
χ(j)(ρk)xρkzmk−j + χ(mk)(ρk)xρk = χ(mk)(ρk)xρk .

Here, the sum in the first summand is 0 since ρk is a root of χ of multiplicity mk, and for the same reason,

the second summand χ(mk)(ρk)xρk is non-zero. So xσ = xρk ∈ E(F). Let now i > 0 and consider

xσzi = xρkzi ∈ xF . We will use that i < m1 + . . .+mk−1 as observed above. Namely, this implies that

mk + i < m1 + . . . + mk, so that xρkzmk+i is an element of F . Let us apply E to it. Similarly as in the

case i = 0 we get

E(xρkzmk+i) =
(mk + i)mk

mk!
χ(mk)(ρk)xρkzi +

n∑
j=mk+1

(mk + i)j

j!
χ(j)(ρk)xρkzmk+i−j .

The sum appearing in the second summand of the last line belongs to E(F) by the induction hypothesis

since mk + i − j < i. As χ(mk)(ρk) 6= 0, we end up with xσzi = xρkzi ∈ E(F). This proves that

E(F) = xF . 	

Example. In the situation of the lemma, the imageE(xρ1O[z]<m1
) will have a gap at xρ2zi for 0 ≤ i < m1.

It will be filled by E(xρ2O[z]<m1+m2
) since χ(m2)(xρ2) 6= 0 and consequently E(xρ2zi+m2) is of the

form cix
ρ2zi plus some lower degree terms in z, for some non-zero constant ci ∈ C.

Theorem. (Normal form theorem vs3, general case) Let L =
∑n
j=0 pj(x)∂j ∈ O[∂] be an n-th order

linear differential operator with holomorphic coefficients pj in O. Let Ω be a set of local exponents

of E with integer differences, ordered increasingly,

ρ1 < ρ2 < . . . < ρr,

meaning that ρk+1 − ρk ∈ N>0. Let mk be the multiplicity of ρk. Set

F = xρ1O[z]<m1
+ xρ2O[z]<m1+m2

+ . . .+ xρrO[z]<m1+m2+...+mr .

Denote by L0 the initial form of L at 0, and assume that L0 has shift 0. There exists a linear

automorphism û : F̂ → F̂ such that the linear maps L and L0 on F̂ induced by L and L0 satisfy

L ◦ û−1 = L0.

Moreover, if 0 is a regular singular point of L, then û restricts to a linear automorphism u : F → F
such that the linear maps on F induced by L and L0 satisfy
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L ◦ u−1 = L0.

Proof. Repeat the proof of version 1 of the normal form theorem, using now Lemma 5 for ensuring the

required equality L0(F) = xF . 	

Corollary. In the situation of the theorem and assuming that L has a regular singularity at 0,

let y1 = xρ, ..., ymρ = xρ log(x)mρ−1, for ρ varying over all local exponents of L, be the basis of

solutions of the Euler equation L0y = 0. Let F be defined as above with normalizing automorphism

u : F → F . Then

u−1(y1) = u−1(xρ), ..., ymρ = u−1(xρ log(x)mρ−1)

form a basis of solutions of Ly = 0. If Ω = {ρ1, ..., ρr} is an increasingly ordered set of local

exponents with integer differences, the solutions yki = u−1(xρk log(x)i), for 1 ≤ k ≤ r, 0 ≤ i < mk,

of Ly = 0 are of the form

yρki(x) = xρk [fki(x) + fk,i−1(x) log(x) + . . .+ fk0(x) log(x)i] +

+

r∑
`=k+1

xρ`
m1+...+m`−1∑
j=m1+...+m`−1

hkij(x) log(x)j,

with holomorphic fki and hkij in O, where all fki have non-zero constant term.

Proof. The first part is a direct consequence of the normal form theorem. The explicit description of the

solutions in the second part follows by a computation from the formula u = IdF −S ◦T of the normalizing

automorphism u : F → F . 	

Example. We consider the operator L = x2∂2− 2x∂+ 2 +x with initial form L0 = x2∂2− 2x∂+ 2, shift

τ = 0, indicial polynomial χ(t) = (t−1)(t−2) with derivative χ′(t) = 2t−3, and local exponents σ = 1,

ρ = 2 at 0 of multiplicity 1 each. So Ω = {σ, ρ} = {1, 2}. Let f(x) =
∑∞
k=0 ckx

k, g(x) =
∑∞
k=0 akx

k,

h(x) =
∑∞
k=0 bkx

k with ak, bk, ck ∈ C be unknown holomorphic functions. The two prospective (linearly

independent) solutions of Ly = 0 are of the form

y1(x) = x2f(x) =
∑∞
k=0 ckx

k+2 ∈ x2C{x},

y2(x) = xg(x) + x2h(x) log(x)

=
∑∞
k=0 akx

k+1 +
∑∞
k=0 bkx

k+2 log(x) ∈ xC{x} ⊕ x2C{x} log(x).

The first one corresponds to the maximal exponent ρ = 2, the second to the exponent σ = 1. It is this second

one which interests us. We set y(x) = xg(x) + x2h(x)z ∈ xC{x} ⊕ x2C{x}z and consider, according to

our preceding constructions, the operator L induced by L,

L : xC{x} ⊕ x2C{x}z → xC{x} ⊕ x2C{x}z,

L(y(x))) = (L+ L′∂z)(y(x)) = L(xg(x)) + L′(x2h(x)) + L(x2h(x))z.

Spliting L into two components, according to the direct sum xC{x} ⊕ x2C{x}z ∼= xC{x} × x2C{x}, the

map L decomposes into L = (Lσ + L′ρ, Lρ) = (L1 + L′2, L2) with linear maps

L1 : xC{x} → xC{x},

L′2 : x2C{x} → xC{x},

L2 : x2C{x} → x2C{x}.
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The analogous decompositions hold for the initial form L0 of L. We have the formulas

L1
0(x1+k) = χ(k + 1)x1+k,

L′20 (x2+k) = χ′(k + 2)x2+k,

L2
0(x2+k) = χ(k + 2)x2+k.

The equation Ly = 0 is equivalent to

(L1
0 + L′20 + x)(xg(x), x2h(x)) = 0

and

(L2
0 + x)(xg(x), x2h(x)) = 0.

This just means that∑∞
k=0 χ(k + 1)akx

k+1 +
∑∞
k=0 χ

′(k + 2)bkx
k+2 +

∑∞
k=0 akx

k+2 = 0,∑∞
k=0 χ(k + 2)bkx

k+2 +
∑∞
k=0 bkx

k+3 = 0,

say, ∑∞
k=0(k2 − k)akx

k+1 +
∑∞
k=0(2k + 1)bkx

k+2 +
∑∞
k=0 akx

k+2 = 0,∑∞
k=0(k2 + k)bkx

k+2 +
∑∞
k=0 bkx

k+3 = 0.

Reordering the sums gives∑∞
k=0((k + 1)2 − (k + 1))ak+1x

k+2 +
∑∞
k=0 akx

k+2 +
∑∞
k=0(2k + 1)bkx

k+2 = 0,∑∞
k=0((k + 1)2 + k + 1)bk+1x

k+3 +
∑∞
k=0 bkx

k+3 = 0,

from which we get the following system of linear recurrences (k ≥ 0)

ak + (k2 + k)ak+1 + (2k + 1)bk = 0,

bk + (k2 + 3k + 2)bk+1 = 0.

We distinguish two cases, b0 = 0 and b0 6= 0. In the first case, we get bk = 0 for all k ≥ 0, and from this

follows a0 = 0, a1 ∈ C arbitrary, and

ak = − 1
(k−1)2+k−1ak−1 = − 1

k2−kak−1

for k ≥ 2. We choose a1 6= 0 in order not to get the trivial zero solution. In the second case, we may take

b0 ∈ C∗ arbitrary, and then the second set of recurrences implies, for k ≥ 1,

bk = − 1
(k−1)2+3(k−1)+2bk−1 = − 1

k2+k bk−1.

The first set of recurrences then implies a0 = −b0 6= 0, a1 ∈ C arbitrary, and, for k ≥ 2,

ak = − 1
(k−1)2+k−1 [ak−1 + (2(k − 1) + 1)bk−1] = − 1

k2−k [ak−1 + (2k − 1)bk−1].

The first case yields the solution y1(x) = x2g(x) with g holomorphic of order 0, corresponding to the

maximal exponent ρ = 2, the second case the solution y2(x) = xg(x) + x2h(x) log(x) with g and h

holomorphic of order 0, corresponding to the smaller exponent σ = 1.

It may irritate here that two coefficients, namely b0 and a1, can be chosen arbitrarily. But in fact, varying

a1 in the expansion of y2(x) just adds a multiple of the solution y1(x) to y2(x): the recursions for ak are

the same in both cases, up to adding 2k−1
k2−k bk−1 in the second case.

5


